Dalamsuatu kelas terdapat 30 orang siswa yang senang dengan pelajaran matematika, 25 orang siswa senang dengan pelajaran fisika, dan 10 orang siswa senang pelajaran matematika dan fisika. a. Gambarlah diagram Venn dari keterangan di atas. b. Berapa orang siswa yang hanya senang pelajaran matematika? c. 12SMA. Matematika. PROBABILITAS. Dalam suatu ruangan terdapat 30 orang dan setiap orang saling bersalaman. Banyaknya salaman yang dilakukan adalah .Tipe Soal UN. Kombinasi. Peluang Wajib. PROBABILITAS. 1 Dalam suatu ruangan terdapat 30 orang. Setiap orang saling bersalaman. Banyaknya salaman yang dilakukan seluruhnya adalah . E. 885 Pembahasan: Soal ini berkaitan dengan kombinasi. Banyaknya salaman yang dapat dilakukan dari 20 orang adalah 30 C 2 30 ! 2. Diketahui empat angka 4, 5, 6 dan 7. Banyak cara untuk menyusun bilangan-bilangan Fast Money. KUMPULAN SOAL MATEMATIKA KELAS XI PELUANG SOAL Petunjuk Pilihlah salah satu jawaban yang paling tepat ! 1. Dalam suatu ruangan terdapat 30 orang. Setiap orang saling bersalaman. Banyaknya salaman yang dilakukan seluruhnya adalah .... A. 435 B. 455 C. 870 D. 875 E. 885 Pembahasan Soal ini berkaitan dengan kombinasi. Banyaknya salaman yang dapat dilakukan dari 20 orang adalah 30 C 2 30 ! = 30 2 ! 2 ! − 30 29 × = 2 435 = Jawaban A 2. Diketahui empat angka 4, 5, 6 dan 7. Banyak cara untuk menyusun bilangan-bilangan yang terdiri dari empat angka dengan syarat bahwa bilangan-bilangan itu tidak A. 8 B. 12 C. 16 D. 18 E. 24 Pembahasan Banyaknya cara untuk menyusun bilangan-bilangan yang terdiri dari empata angka dengan syarat tidak ada bilangan yang sama adalah 4 ! = 4 . 3 . 2 . 1 = 24. Jawaban E 3. Suatu kotak berisi 5 kelereng merah dan 3 kelereng putih. Dua kelereng diambil satu persatu di mana kelereng pertama yang diambil dikembalikan lagi dalam kotak. Peluang terambilnya kelereng pertama pertama dan kedua berwarna merah adalah .... 9 A. 64 15 B. 64 25 C. 64 3 D. 8 5 E. 8 Pembahasan Karena setelah pengambilan yang pertama dikembalikan lagi dalam kotak, maka peristiwa tersebut saling bebas. 5 5 25 P A B P A P B . ∩ = ⋅ = ⋅ = 8 8 64 Jawaban C 4. Sebuah kotak berisi 10 bola, 4 berwarna merah dan 6 berwarna putih. Peluang bahwa kedua bola yang terambil terdiri atas 1 bola merah dan 1 bola putih adalah .... 8 A. 15 5 B. 12 6 C. 15 2 D. 9 1 E. 24 Pembahasan 10 10 ! Banyak cara mengambil 2 bola dari 10 bola = C 45 cara. = = 8 ! 2 ! ⋅ 4 4 ! Banyak cara mengambil 2 bola merah dari 4 bola merah = C 6 cara. 2 = = 2 ! 2 ! 6 ⋅ 6 ! Banyak cara mengambil 2 bola putih dari 6 bola putih = C 16 cara. 2 = = 4 ! 2 ! ⋅ Sehingga banyaknya cara mengambil 2 bola merah atau 2 bola putih adalah 6 + 15 = 21 cara. Banyak cara mengambil 2 bola berwarna 1 merah dan 1 putih adalah 45 – 21 cara = 24 cara. Jadi peluang kedua bola yang terambil terdiri atas 1 bola merah dan 1 bola putih 24 8 adalah . = 45 15 Jawaban A 5. Dua buah dadu bermata enam dilemparkan satu kali secara bersamaan. Peluang munculnya jumlah mata dadu 5 atau jumlah mata dadu 10 adalah .... 11 A. 36 10 B. 36 9 C. 36 8 D. 36 7 E. 36 Pembahasan 4 Peluang muncul jumlah mata dadu 5 adalah . 36 3 Peluang muncul jumlah mata dadu 10 adalah . 36 Jadi, peluang jumlah mata dadu 5 atau 10 adalah 4 3 7 P A P B .= = 36 36 36 Jawaban E 6. Dari sebuah kotak yang berisi 5 kelereng berwarna putih dan 3 kelereng berwarna merah diambil 2 buah kelereng secara acak. Peluang terambil kedua-duanya berwarna putih adalah .... 25 A. 64 10 B. 28 9 C. 28 2 D. 8 10 E. 64 Pembahasan 8 8 ! Ruang sample atau nS = C 2 = = 28 . 6 ! 2 ! 5 5 ! Peluang terambilnya kelereng putih atau nP = C 2 = = 10 . 3 ! 2 ! n P 10 Peluang terambil kedua-duanya berwarna putih = . = n S 28 Jawaban B MatematikaPROBABILITAS Kelas 12 SMAPeluang WajibPermutasiDalam suatu ruangan tunggu terdapat 4 kursi dan 10 orang yang akan menggunakan kursi tersebut. Dengan berapa cara mereka dapat duduk di kursi itu jika salah seorang dari padanya selalu duduk di kursi WajibPROBABILITASMatematikaRekomendasi video solusi lainnya0156Banyak kata yang dapat disusun dari kata 'SUKSES' adalah ...0152Dari angka-angka 0,1,2,3,4,6,7, dan 9 akan dibentuk bilan...0115Dari dalam sebuah kantong yang berisi 4 bola putih, 3 bol...0305Tiga pria dan empat wanita akan duduk dalam satu baris. B...Teks videoHalo coffee Friends untuk menyelesaikan soal ini pertama kita harus tahu ada yang disebut dengan permutasi permutasi itu rumusnya seperti ini dalam notasi rumus itu adalah npl dan rumusnya itu adalah n faktorial dibagi dengan n dikurangi n faktorial seperti ini dengan n merupakan total unsur yang dimiliki dan R adalah banyak unsur yang diambil permutasi ini digunakan ketika urutan itu penting ketika dalam pengambilan kemungkinannya contohnya jika kita memiliki posisi a b posisi a b itu akan berbeda kemungkinannya dengan kita memiliki posisi B jadi posisi a b dan posisi B itu merupakan dua posisi yang berbeda menjadi dua kemungkinan yang berbeda untuk pada soal ini kita akan hitung total kemungkinannya dimana kemungkinan-kemungkinan tersebut akan kita jumlahkan nanti di akhir. Nah yang pertama di sini yang dimaksud dengan akan dijumlahkan. Pikirannya pertama seperti ini jika kita memiliki 4 buah kursi seperti ini yang akan diduduki oleh 10 orang dengan 10 orang itu misalnya kita anggap inisialnya adalah dari A sampai J maka kita anggap misalnya kursi yang pertama itu akan ditempati oleh sia karena disini. Sebutkan bahwa kursi jika salah seorang dari padanya selalu duduk dikursi tertentu jadi kita anggap kursi yang pertama ini selalu ditempati oleh sia maka disini kita memiliki 9 orang lain yang belum duduk yaitu dari B sampai J yang akan menempati 3 kursi lain yang ini sehingga untuk menempati 3 Kursi ini kita akan menggunakan permutasi karena bisa saja yang duduk b c d atau bisa saja b d c itu akan menjadi kemungkinan yang berbeda sehingga caranya adalah kita akan gunakan permutasi karena urutannya penting sehingga dengan menggunakan permutasi kita akan dapatkan 9 karena dari 9 orang akan diam 3 orang atau dipilih 3 orang sehingga akan jadi 93 seperti ini Sehingga dalam perhitungannya kita akan menggunakan rumus nya menjadi 9 faktorial dikurang dibagi maksudnya dengan 9 dikurangi 3 faktorial seperti ini Sehingga caranya adalah 9. Faktorial itu ada caranya kita akan kalikan 9 dikali 8 dikali 7 dikali 6 dikali 5 dikali 4 dikali 3 dikali 2 dikali 1 sampai 1 faktorial itu kemudian dibagikan dengan 9 dikurangi 3 itu adalah 6 jadi 6 faktorial dimana faktor yaitu adalah 6 dikali 5 dikali 4 dikali 3 dikali 2 dikali 1 terdiri dari sini kita akan coret namanya kita coret 5 nya juga 4 juga 3 dan 2 dan 1 Nya sehingga kita mendapatkan 9 dikali 87 saja maka kita akan dapatkan jawabannya adalah 504 jadi kita punya 504 cara jika si A itu menempati posisi kursi yang pertama nah, kemungkinan yang kedua adalah kita punya Jika Si A itu bukan duduk di kursi yang pertama tapi si itu duduknya di kursi yang kedua seperti ini Sehingga dia juga kita akan mendapatkan 9 orang lainnya harus menempati posisi kursi yang lainnya yaitu posisi kursi yang pertama ketiga dan keempat ini di sini juga kita akan pilih dengan menggunakan 9 per 3 maka akan dapatkan seperti tadi 9 faktorial dibagi 6 faktorial atau jawabannya adalah 504 karena tadi kita sudah itu memang sempat lalu kemungkinan yang ketiga kita akan dapatkan jika sekarang si hanya ada di posisi kursi yang ketiga dikasih ada di posisi kursi yang ketiga maka kita akan mendapatkan 9 p 3 juga jawabannya adalah 504 kemudian kita punya kamu punya tempat kemungkinan yang keempat adalah kita punya si Anya sekarang ada di kursi yang ke-4 seperti ini jadi kita akan dapatkan jawabannya adalah 9 p 3 juga yaitu 504 sehingga jika kita totalkan 504 + 504 + 5 + 4 + 504 kemungkinan pertama ditambah bilangan ke-2 ditambah kemungkinan ketiga dan keempat maka kita mendapatkan nilai 2 2016 kemungkinan seperti ini Nah tapi di sini belum selesai karena kita punya 2016 kemungkinan itu Ika yang pasti duduk di sebuah tempat itu syiah, sedangkan di sini kita memiliki 10 orang dari A sampai J bisa saja kita miliki seperti ini kemungkinan nya bisa saja yang selalu duduk dikursi tertentu itu adalah si B jadi si B selalu duduk di kursi pertama atau si B selalu duduk dikursi kedua atau cc selalu duduk dikursi ketiga seperti itu sehingga dari sini kita akan dapatkan kemungkinan jika si B yang tidak diganti itu akan jadi 2016 juga 2016 kemungkinan seperti ini belum lagi kita akan mendapat Kasih sayang di tidak diganti atau side yang tidak diganti sampai z yang tidak diganti sehingga kita akan mendapatkan total kemungkinan yaitu akan menjadi jika masing-masing orang tidak diganti Itu ada 2016 karena kita memiliki 10 orang maka akan dikalikan dengan 10 jadi jawabannya kan jadi 160 cara atau kemungkinan seperti ini sampai jumpa di video pembahasan yang berikutnya.

dalam suatu ruangan terdapat 30 orang